Statistics 210B Lecture 2 Notes

Daniel Raban

January 20, 2022

1 Basic Concentration Inequalities

1.1 Concentration inequalities for sample averages

Suppose we have a random variable $X \sim \mathbb{P}_{X}$, sampled from the distribution \mathbb{P}_{X}. Let $\mu=\mathbb{E}_{X \sim \mathbb{P}_{X}}[X]$ be its expectation. In general, $|x-\mu|$ could be very large. However, in many scenarios (especially when X takes a special form), $|x-\mu|$ is very small with high probability.

Example 1.1. Let $X=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$, where $Z_{i} \stackrel{\mathrm{iid}}{\sim} \mathbb{P}_{Z}$ with $\mathbb{P}_{Z} \in \mathcal{P}([0,1])$ (supported in $[0,1])$. Then $\mathbb{E}[X]=\mathbb{E}\left[Z_{i}\right]=: \mu$. We will show in this lecture that

1. For all $t>0$,

$$
\mathbb{P}(|x-\mu| \geq t)=\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \geq t\right) \leq \underbrace{2 \exp \left(-\frac{n t^{2}}{2}\right)}_{\xrightarrow[n \rightarrow \infty]{ } 0} .
$$

2. Equivalently, for any $0<\delta<1$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \geq \sqrt{\frac{2 \log (2 / \delta)}{n}}\right) \leq \delta
$$

3. Equivalently,

$$
\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu<\sqrt{\frac{2 \log (2 / \delta)}{n}}\right|
$$

with probability at least $1-\delta$, or with high probability.

1.2 Markov's inequality

Lemma 1.1 (Markov's inequality). Let X be a nonnegative random variable. Then for all $t>0$,

$$
\mathbb{P}(X \geq t) \leq \frac{\mathbb{E}[X]}{t}
$$

Proof. Define $f(x)=x$ and $g(x)=t \mathbb{1}_{\{x \geq t\}}$. Then $f(x) \geq g(x)$.

Then

$$
\mathbb{E}[X] \geq \mathbb{E}\left[t \mathbb{1}_{\{X \geq t\}}\right]=t \mathbb{P}(X \geq t)
$$

Markov's inequality is important because other concentration inequalities are consequences of Markov's inequality. For our example, we can apply Markov's inequality to $|X-\mu|$ with $X=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ to get

$$
\begin{aligned}
\mathbb{P}(|X-\mu| \geq t) \leq \frac{\mathbb{E}[|X-\mu|]}{t} & \\
& =\frac{\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right|\right]}{t}
\end{aligned}
$$

Using Jensen's inequality, we can upper bound this by

$$
=\frac{\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right|^{2}\right]^{1 / 2}}{t}
$$

Observe that $\mathbb{E}\left[\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right)^{2}\right] \leq n \mathbb{E}\left[\left(Z_{i}-\mu\right)^{2}\right] / n^{2} \leq 1 / n$. So we get

$$
\begin{aligned}
& \leq \frac{(1 / n)^{1 / 2}}{t} \\
& =\frac{1}{\sqrt{n} t} .
\end{aligned}
$$

To rearrange this in terms of a tail probability δ, solve $\frac{1}{\sqrt{n} t}=\delta$:

$$
\mathbb{P}\left(|X-\mu| \geq \frac{1}{\sqrt{n} \delta}\right) \leq \delta
$$

That is,

$$
|X-\mu|<\frac{1}{\sqrt{n} \delta}
$$

with probability at least $1-\delta$. Here, we have gotten the correct $1 / \sqrt{n}$ scaling, but the $1 / \delta$ dependence is not optimal yet.

Remark 1.1. Letting $n \rightarrow \infty$ gives us a weak law of large numbers. However, if we sum these probabilities in n, we get a divergent sum, so we would need to be more careful if we wanted to use the Borel-Cantelli lemma to prove a strong law of large numbers.

1.3 Chebyshev's inequality

Lemma 1.2. If $\operatorname{Var}(X)$ exists, then or all $t>0$,

$$
\mathbb{P}(X-\mathbb{E}[X] \mid \geq t) \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof. Apply Markov's inequality:

$$
\begin{aligned}
\mathbb{P}(|X-\mathbb{E}[X]| \geq t) & \leq \mathbb{P}\left(|X-\mathbb{E}[X]|^{2} \geq t^{2}\right) \\
& \leq \frac{\mathbb{E}\left[|X-\mathbb{E}[X]|^{2}\right] t^{2}}{.}
\end{aligned}
$$

For our example, apply Chebyshev's inequality to $X=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$ to get

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{1}{\sum_{i=1}^{n} Z_{i}-\mu}\right| \geq t\right) & \leq \frac{\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right)}{t^{2}} \\
& =\frac{\operatorname{Var}\left(Z_{i}\right)}{n t^{2}} \\
& \leq \frac{1}{n t^{2}}
\end{aligned}
$$

Solving $\delta=\frac{1}{n t^{2}}$, we get

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \geq \frac{1}{\sqrt{n} \sqrt{\delta}}\right) \leq \delta .
$$

That is,

$$
\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \geq \frac{1}{\sqrt{n} \sqrt{\delta}}
$$

with probability at least $1-\delta$. In comparison to our application of Markov's inequality, this gives a $1 / \sqrt{\delta}$ dependence instead of a $1 / \delta$ dependence, which is significant when δ is small.

In general, we have

Lemma 1.3. For all $t>0$,

$$
\mathbb{P}(|X-\mu| \geq t) \leq \frac{\mathbb{E}\left[|X-\mu|^{k}\right.}{t^{k}}
$$

provided this k-th moment exists.
As an exercise, apply this to our example and carefully bound $\mathbb{E}\left[\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right|^{k}\right]$ to show that there is a constant $C_{k}<\infty$ such that

$$
\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \leq \frac{C_{k}}{\sqrt{n} \delta^{1 / k}}
$$

with probability at least $1-\delta$.
As another exercise, derive Cantelli's inequality using the same principle:
Lemma 1.4 (Cantelli's inequality).

$$
\mathbb{P}(X-\mathbb{E}[X] \geq t) \leq \frac{\operatorname{Var}(X)}{\operatorname{Var}(X)+t^{2}}
$$

Proof. The events $\{X-\mu \geq t\}=\left\{f(x-\mu) \geq f(t)\right.$ are teh same, where $f(t)=(t+u)^{2}$ for some special choice of u.

1.4 Chernoff's inequality

Lemma 1.5 (Chernoff's inequality). For all $t>0$, we have

$$
\begin{aligned}
\mathbb{P}(X \geq \mu+t) & \leq \inf _{\lambda} \frac{\mathbb{E}\left[e^{\lambda(X-\mu)}\right]^{-\lambda t}}{e} \\
& =e^{-h(t)},
\end{aligned}
$$

where

$$
h(t)=\sup _{\lambda} \lambda t-\log \mathbb{E}\left[e^{\lambda(X-\mu)}\right] .
$$

Proof. We will prove the inequality. We can upper bound the tail probability by rewriting this event:

$$
\mathbb{P}(X-\mu \geq t)=\mathbb{P}\left(e^{\lambda(X-\mu)} \geq e^{\lambda t}\right)
$$

This holds for all λ, so it holds for the inf over all λ. We get

$$
\begin{aligned}
\mathbb{P}(X-\mu \geq t) & =\inf _{\lambda} \mathbb{P}\left(e^{\lambda(X-\mu)} \geq e^{\lambda t}\right) \\
& \leq \inf _{\lambda} \frac{\mathbb{E}\left[e^{\lambda(X-\mu)}\right]}{e^{\lambda t}},
\end{aligned}
$$

where we have used Markov's inequality.

Remark 1.2. To interpret the quantities in the bound, define the moment generating function of a random variable Z as

$$
M_{Z}(\lambda):=\mathbb{E}\left[e^{\lambda Z}\right] .
$$

This is called the moment generating function because

$$
\left.\frac{d}{d \lambda} M_{Z}(\lambda)\right|_{\lambda=0}=\left.\mathbb{E}_{Z}\left[Z e^{\lambda Z}\right]\right|_{\lambda=0}=\mathbb{E}[Z]
$$

In general,

$$
\left.\frac{d^{k}}{d \lambda^{k}} M_{Z}(\lambda)\right|_{\lambda=0}=\left.\mathbb{E}_{Z}\left[Z^{k} e^{\lambda Z}\right]\right|_{\lambda=0}=\mathbb{E}\left[Z^{k}\right],
$$

the k-th moment.
Define the cumulant generating function of Z as

$$
K_{Z}(\lambda):=\log \mathbb{E}\left[e^{\lambda Z}\right]=\log M_{Z}(\lambda) .
$$

This is called the cumulant generating function because it generates the cumulants

$$
\kappa_{k}=\left.\frac{d^{k}}{d \lambda^{k}} K_{Z}(\lambda)\right|_{\lambda=0} .
$$

For example, $\kappa_{2}=\operatorname{Var}(Z) \geq 0$. In fact, $K_{Z}^{\prime \prime}(\lambda) \geq 0$, so the cumulant generating function is always convex.

Define the Legendre transform f^{*} of $f: \mathbb{R} \rightarrow \mathbb{R}$ as

$$
f^{*}(t)=\sup _{\lambda \in \mathbb{R}} \lambda t-f(\lambda) .
$$

Then $h(t)$ is the Legendre transform of $K_{X-\mu}(\lambda)$. The Legendre transform can be thought of as a dual ${ }^{1}$ in the sense that $f^{* *}(\lambda)=\left(f^{*}\right)^{*}(\lambda)=f(\lambda)$ if f is convex.

For our example, apply Chernoff's inequality to $X=\frac{1}{n} \sum_{i=1}^{n} Z_{i}$. Here is a claim we will prove next lecture: If $Z \sim \mathbb{P}_{Z} \in \mathcal{P}([0,1])$, then

$$
\mathbb{E}\left[e^{\lambda(Z-\mathbb{E}[Z])}\right] \leq e^{\lambda^{2} / 2}, \quad \forall \lambda \in \mathbb{R}
$$

Using this claim, we bound

$$
\begin{aligned}
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu \geq t\right) & \leq \inf _{\lambda} \frac{\mathbb{E}\left[e^{\lambda\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right)}\right]}{e^{\lambda t}} \\
& =\inf _{\lambda} \frac{\mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda \frac{1}{n}\left(Z_{i}-\mu\right)}\right]}{e^{\lambda t}}
\end{aligned}
$$

[^0]Using independence of the Z_{i},

$$
\begin{aligned}
& =\inf _{\lambda} \frac{\prod_{i=1}^{n} \mathbb{E}\left[e^{\lambda \frac{1}{n}\left(Z_{i}-\mu\right)}\right]}{e^{\lambda t}} \\
& =\inf _{\lambda} \frac{\mathbb{E}\left[e^{\lambda \frac{1}{n}\left(Z_{i}-\mu\right)}\right]^{n}}{e^{\lambda t}} \\
& \leq \inf _{\lambda} \frac{\left(e^{(\lambda / n)^{2} / 2}\right)^{n}}{e^{\lambda t}} \\
& =\inf _{\lambda} e^{\lambda^{2} /(2 n)-\lambda t}
\end{aligned}
$$

This exponent is quadratic in λ, so we can calculate that it is minimized at $\lambda_{*}=n t$.

$$
\begin{aligned}
& =e^{-(n t)^{2} /(2 n)-n t \cdot t} \\
& =e^{-n t^{2} / 2} .
\end{aligned}
$$

We will apply this line of reasoning again and again in this course.
Similarly, we have the lower bound

$$
\mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu \leq-t\right) \leq e^{-n t^{2} / 2}
$$

Combining these two tail inequalities, we get

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \geq t\right) \leq 2 e^{-n t^{2} / 2}
$$

This is the inequality we presented at the beginning of the lecture. If we solve $\delta=2 e^{-n t^{2} / 2}$, we get

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right| \geq \sqrt{\frac{2 \log (2 / \delta)}{n}}\right) \leq \delta .
$$

That is,

$$
\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}-\mu\right|<\sqrt{\frac{2 \log (2 / \delta)}{n}}
$$

with probability at least $1-\delta$.

1.5 Comparison of inequalities

Here is a table comparing the different inequalities we have seen.

	Markov	Chebyshev	k-th moment	Chernoff
require	First moment	Second moment	k-th moment	Moment generating function
bound	$\frac{1}{\sqrt{n} \delta}$	$\frac{1}{\sqrt{n} \sqrt{\delta}}$	$\frac{1}{\sqrt{n} \delta^{1 / k}}$	$\frac{\sqrt{2 \log (2 / \delta)}}{\sqrt{n}}$

Using more moments, we get better bounds; using the MGF is like using all the moments of a random variable. These have the same dependence in n but different dependence in δ. What is the benefit of better dependence in δ ? This is useful for the union bound!

1.6 Applying union bounds

Lemma 1.6 (Union bound). Suppose we have a collection of events $\left\{E_{s}\right\}_{s \in[d]}$. If $\mathbb{P}\left(E_{s}^{c}\right) \leq \frac{\delta}{d}$ for all s, then

$$
\mathbb{P}\left(\bigcup_{s \in[d]} E_{s}\right) \geq 1-\delta
$$

So if we divide delta by the number of events d, we can use a good δ dependence to get a good union bound.

Remark 1.3. Here is a common mistake that happens in homework, exams, and even ICML and NeurIPS papers. Let $\left(Z_{i}^{(s)}\right)_{i \in[n], s \in[d]} \stackrel{\mathrm{iid}}{\sim} \mathbb{P}_{Z} \in \mathbb{P}([0,1])$. Suppose someone proves that for all $s \in[d]$,

$$
\mathbb{P}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \sqrt{\frac{\log (1 / \delta)}{n}}\right) \geq 1-\delta .
$$

The common mistake is to claim that

$$
\mathbb{P}\left(\forall s \in[d],\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \sqrt{\frac{\log (1 / \delta)}{n}}\right) \geq 1-\delta .
$$

This is not true because it ignores the dependence on the dummy variable s. Instead, the correct thing to do is to say

$$
\mathbb{P}\left(\forall s \in[d],\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \sqrt{\frac{\log (d / \delta)}{n}}\right) \geq 1-\delta .
$$

This d is usually very large, such as exponential or doubly exponential in n.
So please avoid the following statement:

$$
\forall s \in[d], \quad\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \varepsilon n, \quad \text { with probability at least } 1-\delta .
$$

This is ambiguous if the probability applies to each individual s or all s at once. Instead, use this statement instead:

For individual bounds, write
(a) $\forall s \in[d], \mathbb{P}(\cdots) \geq 1-\delta$.
(b) $\forall s \in[d]$, with probability at least $1-\delta$, the following event happens:

$$
\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \varepsilon n .
$$

For union bounds use these:
(a) $\mathbb{P}(\forall s, \cdots) \geq 1-\delta$.
(b) With probability at least $1-\delta$, the following event happens:

$$
\forall s \in[d], \quad\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \varepsilon n .
$$

(c)

$$
\sup _{s \in[d]}\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \varepsilon n \quad \text { with probability at least } 1-\delta .
$$

Here are some exercises to do for using union bounds:
Suppose $\left(Z_{i}^{(s)}\right)_{i \in[n], s \in[d]} \stackrel{\text { iid }}{\sim} \mathbb{P}_{Z} \in \mathcal{P}([0,1])$.

- Markov's inequality implies that with probability $1-\delta$, the following happens:

$$
\forall s \in[d], \quad\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \frac{d}{\sqrt{n} \delta} .
$$

- Chebyshev's inequality implies that with probability $1-\delta$, the following happens:

$$
\forall s \in[d], \quad\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \frac{\sqrt{d}}{\sqrt{n} \sqrt{\delta}} .
$$

- Markov's inequality implies that with probability $1-\delta$, the following happens:

$$
\forall s \in[d], \quad\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{(s)}-\mu\right| \leq \frac{\sqrt{2 \log (2 d / \delta)}}{\sqrt{n}} .
$$

[^0]: ${ }^{1}$ The Legendre transform is sometimes known as the Fenchel dual.

