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1 Basic Concentration Inequalities

1.1 Concentration inequalities for sample averages

Suppose we have a random variable X ∼ PX , sampled from the distribution PX . Let
µ = EX∼PX

[X] be its expectation. In general, |x − µ| could be very large. However, in
many scenarios (especially when X takes a special form), |x − µ| is very small with high
probability.

Example 1.1. Let X = 1
n

∑n
i=1 Zi, where Zi

iid∼ PZ with PZ ∈ P([0, 1]) (supported in
[0, 1]). Then E[X] = E[Zi] =: µ. We will show in this lecture that

1. For all t > 0,

P(|x− µ| ≥ t) = P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−nt

2

2

)
︸ ︷︷ ︸

n→∞−−−→0

.

2. Equivalently, for any 0 < δ < 1,

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥
√

2 log(2/δ)

n

)
≤ δ.

3. Equivalently, ∣∣∣∣∣ 1n
n∑
i=1

Zi − µ <
√

2 log(2/δ)

n

∣∣∣∣∣
with probability at least 1− δ, or with high probability.
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1.2 Markov’s inequality

Lemma 1.1 (Markov’s inequality). Let X be a nonnegative random variable. Then for all
t > 0,

P(X ≥ t) ≤ E[X]

t
.

Proof. Define f(x) = x and g(x) = t1{x≥t}. Then f(x) ≥ g(x).

Then
E[X] ≥ E[t1{X≥t}] = tP(X ≥ t).

Markov’s inequality is important because other concentration inequalities are conse-
quences of Markov’s inequality. For our example, we can apply Markov’s inequality to
|X − µ| with X = 1

n

∑n
i=1 Zi to get

P(|X − µ| ≥ t) ≤ E[|X − µ|]
t

=
E[| 1n

∑n
i=1 Zi − µ|]
t

Using Jensen’s inequality, we can upper bound this by

=
E[| 1n

∑n
i=1 Zi − µ|2]1/2

t

Observe that E[( 1
n

∑n
i=1 Zi − µ)2] ≤ nE[(Zi − µ)2]/n2 ≤ 1/n. So we get

≤ (1/n)1/2

t

=
1√
nt
.

To rearrange this in terms of a tail probability δ, solve 1√
nt

= δ:

P
(
|X − µ| ≥ 1√

nδ

)
≤ δ.
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That is,

|X − µ| < 1√
nδ

with probability at least 1− δ. Here, we have gotten the correct 1/
√
n scaling, but the 1/δ

dependence is not optimal yet.

Remark 1.1. Letting n → ∞ gives us a weak law of large numbers. However, if we sum
these probabilities in n, we get a divergent sum, so we would need to be more careful if we
wanted to use the Borel-Cantelli lemma to prove a strong law of large numbers.

1.3 Chebyshev’s inequality

Lemma 1.2. If Var(X) exists, then or all t > 0,

P(X − E[X]| ≥ t) ≤ Var(X)

t2
.

Proof. Apply Markov’s inequality:

P(|X − E[X]| ≥ t) ≤ P(|X − E[X]|2 ≥ t2)

≤ E[|X − E[X]|2]t2

.

For our example, apply Chebyshev’s inequality to X = 1
n

∑n
i=1 Zi to get

P
(∣∣∣∣ 1∑n

i=1 Zi − µ

∣∣∣∣ ≥ t) ≤ Var( 1
n

∑n
i=1 Zi)

t2

=
Var(Zi)

nt2

≤ 1

nt2
.

Solving δ = 1
nt2

, we get

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ 1
√
n
√
δ

)
≤ δ.

That is, ∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ 1
√
n
√
δ

with probability at least 1 − δ. In comparison to our application of Markov’s inequality,
this gives a 1/

√
δ dependence instead of a 1/δ dependence, which is significant when δ is

small.
In general, we have
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Lemma 1.3. For all t > 0,

P(|X − µ| ≥ t) ≤ E[|X − µ|k

tk
,

provided this k-th moment exists.

As an exercise, apply this to our example and carefully bound E[| 1n
∑n

i=1 Zi − µ|k] to
show that there is a constant Ck <∞ such that∣∣∣∣∣ 1n

n∑
i=1

Zi − µ

∣∣∣∣∣ ≤ Ck√
nδ1/k

with probability at least 1− δ.
As another exercise, derive Cantelli’s inequality using the same principle:

Lemma 1.4 (Cantelli’s inequality).

P(X − E[X] ≥ t) ≤ Var(X)

Var(X) + t2
.

Proof. The events {X −µ ≥ t} = {f(x−µ) ≥ f(t) are teh same, where f(t) = (t+ u)2 for
some special choice of u.

1.4 Chernoff’s inequality

Lemma 1.5 (Chernoff’s inequality). For all t > 0, we have

P(X ≥ µ+ t) ≤ inf
λ

E[eλ(X−µ)]

e

−λt

= e−h(t),

where
h(t) = sup

λ
λt− logE[eλ(X−µ)].

Proof. We will prove the inequality. We can upper bound the tail probability by rewriting
this event:

P(X − µ ≥ t) = P(eλ(X−µ) ≥ eλt)

This holds for all λ, so it holds for the inf over all λ. We get

P(X − µ ≥ t) = inf
λ

P(eλ(X−µ) ≥ eλt)

≤ inf
λ

E[eλ(X−µ)]

eλt
,

where we have used Markov’s inequality.
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Remark 1.2. To interpret the quantities in the bound, define the moment generating
function of a random variable Z as

MZ(λ) := E[eλZ ].

This is called the moment generating function because

d

dλ
MZ(λ)|λ=0 = EZ [ZeλZ ]|λ=0 = E[Z].

In general,
dk

dλk
MZ(λ)|λ=0 = EZ [ZkeλZ ]|λ=0 = E[Zk],

the k-th moment.
Define the cumulant generating function of Z as

KZ(λ) := logE[eλZ ] = logMZ(λ).

This is called the cumulant generating function because it generates the cumulants

κk =
dk

dλk
KZ(λ)|λ=0.

For example, κ2 = Var(Z) ≥ 0. In fact, K ′′Z(λ) ≥ 0, so the cumulant generating function
is always convex.

Define the Legendre transform f∗ of f : R→ R as

f∗(t) = sup
λ∈R

λt− f(λ).

Then h(t) is the Legendre transform of KX−µ(λ). The Legendre transform can be thought
of as a dual1 in the sense that f∗∗(λ) = (f∗)∗(λ) = f(λ) if f is convex.

For our example, apply Chernoff’s inequality to X = 1
n

∑n
i=1 Zi. Here is a claim we

will prove next lecture: If Z ∼ PZ ∈ P([0, 1]), then

E[eλ(Z−E[Z])] ≤ eλ2/2, ∀λ ∈ R.

Using this claim, we bound

P

(
1

n

n∑
i=1

Zi − µ ≥ t

)
≤ inf

λ

E[eλ(
1
n

∑n
i=1 Zi−µ)]

eλt

= inf
λ

E[
∏n
i=1 e

λ 1
n
(Zi−µ)]

eλt

1The Legendre transform is sometimes known as the Fenchel dual.
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Using independence of the Zi,

= inf
λ

∏n
i=1 E[eλ

1
n
(Zi−µ)]

eλt

= inf
λ

E[eλ
1
n
(Zi−µ)]n

eλt

≤ inf
λ

(e(λ/n)
2/2)n

eλt

= inf
λ
eλ

2/(2n)−λt

This exponent is quadratic in λ, so we can calculate that it is minimized at λ∗ = nt.

= e−(nt)
2/(2n)−nt·t

= e−nt
2/2.

We will apply this line of reasoning again and again in this course.
Similarly, we have the lower bound

P

(
1

n

n∑
i=1

Zi − µ ≤ −t

)
≤ e−nt2/2.

Combining these two tail inequalities, we get

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥ t
)
≤ 2e−nt

2/2.

This is the inequality we presented at the beginning of the lecture. If we solve δ = 2e−nt
2/2,

we get

P

(∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ ≥
√

2 log(2/δ)

n

)
≤ δ.

That is, ∣∣∣∣∣ 1n
n∑
i=1

Zi − µ

∣∣∣∣∣ <
√

2 log(2/δ)

n

with probability at least 1− δ.

1.5 Comparison of inequalities

Here is a table comparing the different inequalities we have seen.

Markov Chebyshev k-th moment Chernoff

require First moment Second moment k-th moment Moment generating function

bound 1√
nδ

1√
n
√
δ

1√
nδ1/k

√
2 log(2/δ)√

n
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Using more moments, we get better bounds; using the MGF is like using all the moments
of a random variable. These have the same dependence in n but different dependence in
δ. What is the benefit of better dependence in δ? This is useful for the union bound!

1.6 Applying union bounds

Lemma 1.6 (Union bound). Suppose we have a collection of events {Es}s∈[d]. If P(Ecs) ≤ δ
d

for all s, then

P

 ⋃
s∈[d]

Es

 ≥ 1− δ.

So if we divide delta by the number of events d, we can use a good δ dependence to get
a good union bound.

Remark 1.3. Here is a common mistake that happens in homework, exams, and even

ICML and NeurIPS papers. Let (Z
(s)
i )i∈[n],s∈[d]

iid∼ PZ ∈ P([0, 1]). Suppose someone proves
that for all s ∈ [d],

P

(∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

log(1/δ)

n

)
≥ 1− δ.

The common mistake is to claim that

P

(
∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

log(1/δ)

n

)
≥ 1− δ.

This is not true because it ignores the dependence on the dummy variable s. Instead, the
correct thing to do is to say

P

(
∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

log(d/δ)

n

)
≥ 1− δ.

This d is usually very large, such as exponential or doubly exponential in n.
So please avoid the following statement:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn, with probability at least 1− δ.

This is ambiguous if the probability applies to each individual s or all s at once. Instead,
use this statement instead:

For individual bounds, write
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(a) ∀s ∈ [d], P(· · · ) ≥ 1− δ.

(b) ∀s ∈ [d], with probability at least 1− δ, the following event happens:∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn.
For union bounds use these:

(a) P(∀s, · · · ) ≥ 1− δ.

(b) With probability at least 1− δ, the following event happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn.
(c)

sup
s∈[d]

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ εn with probability at least 1− δ.

Here are some exercises to do for using union bounds:

Suppose (Z
(s)
i )i∈[n],s∈[d]

iid∼ PZ ∈ P([0, 1]).

• Markov’s inequality implies that with probability 1− δ, the following happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤ d√
nδ
.

• Chebyshev’s inequality implies that with probability 1− δ, the following happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√
d

√
n
√
δ
.

• Markov’s inequality implies that with probability 1− δ, the following happens:

∀s ∈ [d],

∣∣∣∣∣ 1n
n∑
i=1

Z
(s)
i − µ

∣∣∣∣∣ ≤
√

2 log(2d/δ)√
n

.
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