Statistics 210B Lecture 2 Notes

Daniel Raban

January 20, 2022

1 Basic Concentration Inequalities

1.1 Concentration inequalities for sample averages

Suppose we have a random variable $X \sim \mathbb{P}_X$, sampled from the distribution \mathbb{P}_X . Let $\mu = \mathbb{E}_{X \sim \mathbb{P}_X}[X]$ be its expectation. In general, $|x - \mu|$ could be very large. However, in many scenarios (especially when X takes a special form), $|x - \mu|$ is very small with high probability.

Example 1.1. Let $X = \frac{1}{n} \sum_{i=1}^{n} Z_i$, where $Z_i \stackrel{\text{iid}}{\sim} \mathbb{P}_Z$ with $\mathbb{P}_Z \in \mathcal{P}([0,1])$ (supported in [0,1]). Then $\mathbb{E}[X] = \mathbb{E}[Z_i] =: \mu$. We will show in this lecture that

1. For all t > 0,

$$\mathbb{P}(|x-\mu| \ge t) = \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu\right| \ge t\right) \le \underbrace{2\exp\left(-\frac{nt^2}{2}\right)}_{\stackrel{n \to \infty}{\underbrace{}}_{0}}.$$

2. Equivalently, for any $0 < \delta < 1$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\right| \geq \sqrt{\frac{2\log(2/\delta)}{n}}\right) \leq \delta.$$

3. Equivalently,

$$\left|\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu < \sqrt{\frac{2\log(2/\delta)}{n}}\right|$$

with probability at least $1 - \delta$, or with high probability.

1.2 Markov's inequality

Lemma 1.1 (Markov's inequality). Let X be a nonnegative random variable. Then for all t > 0,

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}[X]}{t}.$$

Proof. Define f(x) = x and $g(x) = t \mathbb{1}_{\{x \ge t\}}$. Then $f(x) \ge g(x)$.

$$f(x) = x$$

$$f(x) = t \cdot f(x \ge t)$$

Then

$$\mathbb{E}[X] \ge \mathbb{E}[t\mathbb{1}_{\{X \ge t\}}] = t\mathbb{P}(X \ge t).$$

Markov's inequality is important because other concentration inequalities are consequences of Markov's inequality. For our example, we can apply Markov's inequality to $|X - \mu|$ with $X = \frac{1}{n} \sum_{i=1}^{n} Z_i$ to get

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\mathbb{E}[|X - \mu|]}{t} = \frac{\mathbb{E}[|\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu|]}{t}$$

Using Jensen's inequality, we can upper bound this by

$$= \frac{\mathbb{E}[|\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu|^2]^{1/2}}{t}$$

Observe that $\mathbb{E}[(\frac{1}{n}\sum_{i=1}^{n}Z_i-\mu)^2] \le n \mathbb{E}[(Z_i-\mu)^2]/n^2 \le 1/n$. So we get

$$\leq \frac{(1/n)^{1/2}}{t}$$
$$= \frac{1}{\sqrt{nt}}.$$

To rearrange this in terms of a tail probability δ , solve $\frac{1}{\sqrt{nt}} = \delta$:

$$\mathbb{P}\left(|X-\mu| \ge \frac{1}{\sqrt{n\delta}}\right) \le \delta.$$

That is,

$$|X - \mu| < \frac{1}{\sqrt{n\delta}}$$

with probability at least $1 - \delta$. Here, we have gotten the correct $1/\sqrt{n}$ scaling, but the $1/\delta$ dependence is not optimal yet.

Remark 1.1. Letting $n \to \infty$ gives us a weak law of large numbers. However, if we sum these probabilities in n, we get a divergent sum, so we would need to be more careful if we wanted to use the Borel-Cantelli lemma to prove a strong law of large numbers.

1.3 Chebyshev's inequality

Lemma 1.2. If Var(X) exists, then or all t > 0,

$$\mathbb{P}(X - \mathbb{E}[X]| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$$

Proof. Apply Markov's inequality:

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge t) \le \mathbb{P}(|X - \mathbb{E}[X]|^2 \ge t^2)$$
$$\le \frac{\mathbb{E}[|X - \mathbb{E}[X]|^2]t^2}{\mathbb{E}[X - \mathbb{E}[X]|^2]t^2}$$

For our example, apply Chebyshev's inequality to $X = \frac{1}{n} \sum_{i=1}^{n} Z_i$ to get

$$\mathbb{P}\left(\left|\frac{1}{\sum_{i=1}^{n} Z_{i} - \mu}\right| \ge t\right) \le \frac{\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right)}{t^{2}}$$
$$= \frac{\operatorname{Var}(Z_{i})}{nt^{2}}$$
$$\le \frac{1}{nt^{2}}.$$

Solving $\delta = \frac{1}{nt^2}$, we get

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\right| \geq \frac{1}{\sqrt{n}\sqrt{\delta}}\right) \leq \delta.$$

That is,

$$\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\right| \geq \frac{1}{\sqrt{n}\sqrt{\delta}}$$

with probability at least $1 - \delta$. In comparison to our application of Markov's inequality, this gives a $1/\sqrt{\delta}$ dependence instead of a $1/\delta$ dependence, which is significant when δ is small.

In general, we have

Lemma 1.3. For all t > 0,

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\mathbb{E}[|X - \mu|^k}{t^k},$$

provided this k-th moment exists.

As an exercise, apply this to our example and carefully bound $\mathbb{E}[|\frac{1}{n}\sum_{i=1}^{n}Z_i - \mu|^k]$ to show that there is a constant $C_k < \infty$ such that

$$\left|\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu\right| \le \frac{C_k}{\sqrt{n}\delta^{1/k}}$$

with probability at least $1 - \delta$.

As another exercise, derive Cantelli's inequality using the same principle:

Lemma 1.4 (Cantelli's inequality).

$$\mathbb{P}(X - \mathbb{E}[X] \ge t) \le \frac{\operatorname{Var}(X)}{\operatorname{Var}(X) + t^2}$$

Proof. The events $\{X - \mu \ge t\} = \{f(x - \mu) \ge f(t) \text{ are teh same, where } f(t) = (t + u)^2 \text{ for some special choice of } u.$

1.4 Chernoff's inequality

Lemma 1.5 (Chernoff's inequality). For all t > 0, we have

$$\mathbb{P}(X \ge \mu + t) \le \inf_{\lambda} \frac{\mathbb{E}[e^{\lambda(X-\mu)}]}{e}^{-\lambda t}$$
$$= e^{-h(t)},$$

where

$$h(t) = \sup_{\lambda} \lambda t - \log \mathbb{E}[e^{\lambda(X-\mu)}].$$

Proof. We will prove the inequality. We can upper bound the tail probability by rewriting this event:

$$\mathbb{P}(X - \mu \ge t) = \mathbb{P}(e^{\lambda(X - \mu)} \ge e^{\lambda t})$$

This holds for all λ , so it holds for the inf over all λ . We get

$$\mathbb{P}(X - \mu \ge t) = \inf_{\lambda} \mathbb{P}(e^{\lambda(X - \mu)} \ge e^{\lambda t})$$
$$\leq \inf_{\lambda} \frac{\mathbb{E}[e^{\lambda(X - \mu)}]}{e^{\lambda t}},$$

where we have used Markov's inequality.

Remark 1.2. To interpret the quantities in the bound, define the **moment generating** function of a random variable Z as

$$M_Z(\lambda) := \mathbb{E}[e^{\lambda Z}].$$

This is called the moment generating function because

$$\frac{d}{d\lambda}M_Z(\lambda)|_{\lambda=0} = \mathbb{E}_Z[Ze^{\lambda Z}]|_{\lambda=0} = \mathbb{E}[Z].$$

In general,

$$\frac{d^k}{d\lambda^k} M_Z(\lambda)|_{\lambda=0} = \mathbb{E}_Z[Z^k e^{\lambda Z}]|_{\lambda=0} = \mathbb{E}[Z^k],$$

the k-th moment.

Define the **cumulant generating function** of Z as

$$K_Z(\lambda) := \log \mathbb{E}[e^{\lambda Z}] = \log M_Z(\lambda).$$

This is called the cumulant generating function because it generates the **cumulants**

$$\kappa_k = \frac{d^k}{d\lambda^k} K_Z(\lambda)|_{\lambda=0}.$$

For example, $\kappa_2 = \text{Var}(Z) \ge 0$. In fact, $K''_Z(\lambda) \ge 0$, so the cumulant generating function is always convex.

Define the Legendre transform f^* of $f : \mathbb{R} \to \mathbb{R}$ as

$$f^*(t) = \sup_{\lambda \in \mathbb{R}} \lambda t - f(\lambda).$$

Then h(t) is the Legendre transform of $K_{X-\mu}(\lambda)$. The Legendre transform can be thought of as a dual¹ in the sense that $f^{**}(\lambda) = (f^*)^*(\lambda) = f(\lambda)$ if f is convex.

For our example, apply Chernoff's inequality to $X = \frac{1}{n} \sum_{i=1}^{n} Z_i$. Here is a claim we will prove next lecture: If $Z \sim \mathbb{P}_Z \in \mathcal{P}([0, 1])$, then

$$\mathbb{E}[e^{\lambda(Z-\mathbb{E}[Z])}] \le e^{\lambda^2/2}, \qquad \forall \lambda \in \mathbb{R}.$$

Using this claim, we bound

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu \geq t\right) \leq \inf_{\lambda}\frac{\mathbb{E}\left[e^{\lambda\left(\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\right)}\right]}{e^{\lambda t}}$$
$$= \inf_{\lambda}\frac{\mathbb{E}\left[\prod_{i=1}^{n}e^{\lambda\frac{1}{n}\left(Z_{i}-\mu\right)}\right]}{e^{\lambda t}}$$

¹The Legendre transform is sometimes known as the **Fenchel dual**.

Using independence of the Z_i ,

$$= \inf_{\lambda} \frac{\prod_{i=1}^{n} \mathbb{E}[e^{\lambda \frac{1}{n}(Z_{i}-\mu)}]}{e^{\lambda t}}$$
$$= \inf_{\lambda} \frac{\mathbb{E}[e^{\lambda \frac{1}{n}(Z_{i}-\mu)}]^{n}}{e^{\lambda t}}$$
$$\leq \inf_{\lambda} \frac{(e^{(\lambda/n)^{2}/2})^{n}}{e^{\lambda t}}$$
$$= \inf_{\lambda} e^{\lambda^{2}/(2n)-\lambda t}$$

This exponent is quadratic in λ , so we can calculate that it is minimized at $\lambda_* = nt$.

$$= e^{-(nt)^2/(2n) - nt \cdot t}$$

= $e^{-nt^2/2}$.

We will apply this line of reasoning again and again in this course.

Similarly, we have the lower bound

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu \le -t\right) \le e^{-nt^2/2}.$$

Combining these two tail inequalities, we get

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} Z_{i} - \mu\right| \ge t\right) \le 2e^{-nt^{2}/2}.$$

This is the inequality we presented at the beginning of the lecture. If we solve $\delta = 2e^{-nt^2/2}$, we get

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}-\mu\right| \geq \sqrt{\frac{2\log(2/\delta)}{n}}\right) \leq \delta$$

That is,

$$\left|\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu\right| < \sqrt{\frac{2\log(2/\delta)}{n}}$$

with probability at least $1 - \delta$.

1.5 Comparison of inequalities

Here is a table comparing the different inequalities we have seen.

	Markov	Chebyshev	k-th moment	Chernoff
require	First moment	Second moment	k-th moment	Moment generating function
bound	$\frac{1}{\sqrt{n}\delta}$	$\frac{1}{\sqrt{n}\sqrt{\delta}}$	$\frac{1}{\sqrt{n}\delta^{1/k}}$	$\frac{\sqrt{2\log(2/\delta)}}{\sqrt{n}}$

Using more moments, we get better bounds; using the MGF is like using all the moments of a random variable. These have the same dependence in n but different dependence in δ . What is the benefit of better dependence in δ ? This is useful for the union bound!

1.6 Applying union bounds

Lemma 1.6 (Union bound). Suppose we have a collection of events $\{E_s\}_{s \in [d]}$. If $\mathbb{P}(E_s^c) \leq \frac{\delta}{d}$ for all s, then

$$\mathbb{P}\left(\bigcup_{s\in[d]}E_s\right)\geq 1-\delta.$$

So if we divide delta by the number of events d, we can use a good δ dependence to get a good union bound.

Remark 1.3. Here is a common mistake that happens in homework, exams, and even ICML and NeurIPS papers. Let $(Z_i^{(s)})_{i \in [n], s \in [d]} \stackrel{\text{iid}}{\sim} \mathbb{P}_Z \in \mathbb{P}([0, 1])$. Suppose someone proves that for all $s \in [d]$,

$$\mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{(s)}-\mu\right| \leq \sqrt{\frac{\log(1/\delta)}{n}}\right) \geq 1-\delta.$$

The common mistake is to claim that

$$\mathbb{P}\left(\forall s \in [d], \left|\frac{1}{n}\sum_{i=1}^{n} Z_i^{(s)} - \mu\right| \le \sqrt{\frac{\log(1/\delta)}{n}}\right) \ge 1 - \delta.$$

This is not true because it ignores the dependence on the dummy variable s. Instead, the correct thing to do is to say

$$\mathbb{P}\left(\forall s \in [d], \left|\frac{1}{n}\sum_{i=1}^{n} Z_{i}^{(s)} - \mu\right| \leq \sqrt{\frac{\log(d/\delta)}{n}}\right) \geq 1 - \delta.$$

This d is usually very large, such as exponential or doubly exponential in n.

So please avoid the following statement:

$$\forall s \in [d], \qquad \left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{(s)}-\mu\right| \leq \varepsilon n, \qquad \text{with probability at least } 1-\delta.$$

This is ambiguous if the probability applies to each individual s or all s at once. Instead, use this statement instead:

For individual bounds, write

- (a) $\forall s \in [d], \mathbb{P}(\cdots) \ge 1 \delta.$
- (b) $\forall s \in [d]$, with probability at least 1δ , the following event happens:

$$\left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{(s)}-\mu\right|\leq\varepsilon n.$$

For union bounds use these:

- (a) $\mathbb{P}(\forall s, \cdots) \ge 1 \delta$.
- (b) With probability at least 1δ , the following event happens:

$$\forall s \in [d], \qquad \left| \frac{1}{n} \sum_{i=1}^{n} Z_i^{(s)} - \mu \right| \le \varepsilon n.$$

(c)

$$\sup_{s \in [d]} \left| \frac{1}{n} \sum_{i=1}^{n} Z_i^{(s)} - \mu \right| \le \varepsilon n \qquad \text{with probability at least } 1 - \delta$$

Here are some exercises to do for using union bounds:

Suppose $(Z_i^{(s)})_{i \in [n], s \in [d]} \stackrel{\text{iid}}{\sim} \mathbb{P}_Z \in \mathcal{P}([0, 1]).$

• Markov's inequality implies that with probability $1 - \delta$, the following happens:

$$\forall s \in [d], \qquad \left| \frac{1}{n} \sum_{i=1}^{n} Z_i^{(s)} - \mu \right| \le \frac{d}{\sqrt{n\delta}}.$$

• Chebyshev's inequality implies that with probability $1 - \delta$, the following happens:

$$\forall s \in [d], \qquad \left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{(s)}-\mu\right| \leq \frac{\sqrt{d}}{\sqrt{n}\sqrt{\delta}}.$$

• Markov's inequality implies that with probability $1 - \delta$, the following happens:

$$\forall s \in [d], \qquad \left|\frac{1}{n}\sum_{i=1}^{n}Z_{i}^{(s)}-\mu\right| \leq \frac{\sqrt{2\log(2d/\delta)}}{\sqrt{n}}.$$